Jay Brown Jay Brown
0 Course Enrolled • 0 Course CompletedBiography
GES-C01認定資格試験問題集 & GES-C01参考書勉強
さらに、CertShiken GES-C01ダンプの一部が現在無料で提供されています:https://drive.google.com/open?id=1sp3YikV1wFEtN5ZcsPXp1c_jK1kNyhh7
CertShikenのGES-C01問題集というものをきっと聞いたことがあるでしょう。でも、利用したことがありますか。「CertShikenのGES-C01問題集は本当に良い教材です。おかげで試験に合格しました。」という声がよく聞こえています。CertShikenは問題集を利用したことがある多くの人々からいろいろな好評を得ました。それはCertShikenはたしかに受験生の皆さんを大量な時間を節約させ、順調に試験に合格させることができますから。
CertShikenのGES-C01問題集を入手してから、非常に短い時間で試験に準備しても、あなたは順調に試験に合格することができます。CertShikenの問題集には、実際の試験に出る可能性がある問題が全部含まれていますから、問題集における問題を覚える限り、簡単に試験に合格することができます。これは試験に合格する最速のショートカットです。仕事に忙しいから試験の準備をする時間はあまりないとしたら、絶対CertShikenのGES-C01問題集を見逃すことはできないです。これはあなたがGES-C01試験に合格できる最善で、しかも唯一の方法ですから。
Snowflake GES-C01参考書勉強、GES-C01キャリアパス
周りの多くの人は全部Snowflake GES-C01資格認定試験にパースしまして、彼らはどのようにできましたか。今には、あなたにCertShikenを教えさせていただけませんか。我々社サイトのSnowflake GES-C01問題庫は最新かつ最完備な勉強資料を有して、あなたに高品質のサービスを提供するのはGES-C01資格認定試験の成功にとって唯一の選択です。躊躇わなくて、CertShikenサイト情報を早く了解して、あなたに試験合格を助かってあげますようにお願いいたします。
Snowflake SnowPro® Specialty: Gen AI Certification Exam 認定 GES-C01 試験問題 (Q112-Q117):
質問 # 112
An enterprise is deploying a new RAG application using Snowflake Cortex Search on a large dataset of customer support tickets. The operations team is concerned about managing compute costs and ensuring efficient index refreshes for the Cortex Search Service, which needs to be updated hourly. Which of the following considerations and configurations are relevant for optimizing cost and performance of the Cortex Search Service in this scenario?
- A. For embedding text, selecting a model like

- B. The primary cost driver for Cortex Search is the number of search queries executed against the service, with the volume of indexed data (GB/month) having a minimal impact on overall billing.
- C. The

- D. For optimal performance and cost efficiency, Snowflake recommends using a dedicated warehouse of size no larger than MEDIUM for each Cortex Search Service.
- E. CHANGE_TRACKING
正解:A、C、D、E
解説:
Option A is correct because a Cortex Search Service requires a virtual warehouse to refresh the service, which runs queries against base objects when they are initialized and refreshed, incurring compute costs. Option B is correct because the cost of embedding models varies. For example, 'snowflake-arctic-embed-m-v1.5 costs 0.03 credits per million tokens, while 'voyage-multilingual-2 costs 0.07 credits per million tokens. Choosing a more cost-effective model like 'snowflake-arctic-embed-m-v1.5 for English-only data can reduce token costs. Option C is correct because Snowflake recommends using a dedicated warehouse of size no larger than MEDIUM for each Cortex Search Service to achieve optimal performance. Option D is correct because change tracking is required for the Cortex Search Service to be able to detect and process updates to the base table, enabling incremental refreshes that are more efficient than full re-indexing. Option E is incorrect because Cortex Search Services incur costs based on virtual warehouse compute for refreshes, 'EMBED_TEXT_TOKENS' cost per input token, and a charge of 6.3 Credits per GB/mo of indexed data. The volume of indexed data has a significant impact, not minimal.
質問 # 113
A data engineering team is setting up a Retrieval Augmented Generation (RAG) application using Snowflake Cortex Search to provide contextual answers from customer support transcripts. The transcripts are stored in a Snowflake table named SUPPORT _ TRANSCRIPTS. Which of the following statements are crucial considerations or accurate facts regarding the initial setup and configuration of the Cortex Search Service for this use case?
- A. Cortex Search is designed to get users up and running quickly with a hybrid (vector and keyword) search engine on text data, handling embedding, infrastructure maintenance, and search quality parameter tuning automatically.
- B. The Cortex Search Service can effectively be used as a RAG engine for LLM chatbots by leveraging semantic search capabilities to provide customized and contextualized responses from the text data.
- C. Snowflake recommends using a dedicated virtual warehouse of any size, including X-Large or 2X-Large, for each Cortex Search Service to ensure the fastest possible materialization of search indexes during creation and refresh.
- D. Columns specified in the ATTRIBUTES field during service creation are only used for filtering search results and do not need to be present in the source query.
- E. The CREATE CORTEX SEARCH SERVICE command requires that CHANGE_TRACKING = TRUE be enabled on the source table, especially if the role creating the service is not the table owner. This ensures that the service can track updates to the base data.
正解:A、B、E
解説:
Option A is correct because change tracking is required for the Cortex Search Service to monitor updates to the base table. Option B is incorrect; Snowflake recommends using a dedicated warehouse no larger than MEDIUM for each service, as larger warehouses do not necessarily increase performance for index materialization. Option C is incorrect because columns in the ATTRIBUTES field must be included in the source query. Options D and E are correct as Cortex Search provides low-latency, high-quality hybrid (vector and keyword) search, handling underlying complexities, and is primarily used as a RAG engine for LLM chatbots leveraging semantic search.
質問 # 114
A data science team is fine-tuning a Snowflake Document AI model to improve the extraction accuracy of specific fields from a new type of complex legal document. They are consistently observing low confidence scores and inconsistent 'value' keys for extracted entities, even after initial training. Which two of the following best practices should the team follow to most effectively improve the model's extraction accuracy and confidence for this complex document type?
- A. Set the 'temperature' parameter to a higher value (e.g., 0.7) during '!PREDICT calls to encourage more creative and diverse interpretations by the model.
- B. Actively involve subject matter experts (SMEs) or document owners throughout the iterative process to help define data values, provide annotations, and evaluate the model's effectiveness.
- C. Prioritize extensive prompt engineering by creating highly detailed and complex questions with intricate logic to guide the LLM's understanding of the extraction task.
- D. Limit the fine-tuning training data exclusively to perfectly formatted and clean documents to ensure the model learns from ideal examples without noise.
- E. Ensure the training dataset used for fine-tuning includes diverse documents representing various layouts, data variations, and explicit examples of values or empty cells where appropriate.
正解:B、E
解説:
To improve Document AI model training, it is crucial to ensure that the documents uploaded for training represent a real use case and that the dataset consists of diverse documents in terms of both layout and data. If all documents contain the same data or are always presented in the same form, the model might provide incorrect results. For table extraction, it is vital that enough data is used to train the model to include ' NULC values and maintain order. Therefore, ensuring a diverse training dataset (Option B) is a key best practice. Additionally, Subject Matter Experts (SMEs) and document owners are crucial partners in understanding and evaluating the model's effectiveness in extracting the required information. Their involvement in defining data values, providing annotations, and evaluating results will significantly improve accuracy (Option C). Option A is not a best practice; it's recommended to keep questions as encompassing as possible and rely on training with annotations rather than complex prompt engineering, especially for document variability. Option D is incorrect; a higher 'temperature' value increases the randomness and diversity of the model's output, which is generally undesirable for accurate data extraction where deterministic results are preferred. For most consistent results, 'temperature' should be set to 0. Option E is incorrect because training on a restricted set of perfectly formatted documents can lead to a model that performs poorly on real-world, varied documents; diversity in training data is essential.
質問 # 115
A multi-national corporation uses Snowflake across several AWS regions. Their primary operational Snowflake account is in AWS US East (Ohio), but they need to leverage a specific AI_COMPLETE model, llama4-maverick, which is natively available in AWS US East 1 (N. Virginia) but not in US East (Ohio). To address this, the Snowflake administrator enables cross-region inference for their US East (Ohio) account.
- A. To enable cross-region inference for the US East (Ohio) account, the administrator would execute the command: ALTER ACCOUNT SET AWS_US' ; to allow inference requests to be processed in any AWS US region where the model is available. CORTEX_ENABLED_CROSS REGION =AWS_US' ;
- B. Cross-region inference is fully supported for AI_COMPLETE in U.S. SnowGov regions for both inbound and outbound inference requests, provided the target model is available in the respective SnowGov region.
- C. The query latency for cross-region inference with AI_COMPLETE is consistently low and predictable, as Snowflake's architecture is designed to completely negate the impact of geographical distance and network variations.
- D. User inputs, service-generated prompts, and the generated outputs from cross-region AI_COMPLETE calls are automatically stored or cached in the remote processing region to optimize performance for subsequent identical requests.
- E. The llama4-maverick model is listed as natively available in AWS US East 1 (N. Virginia) and is supported for cross-region inference (AWS US Cross-Region), validating it as a suitable target for inference from US East (Ohio).
正解:A、E
解説:
Option A is correct because the CORTEX_ENABLED_CROSS_REGION account parameter is used to enable cross-region inference. Setting it CORTEX_ENABLED_CROSS_REGION would permit inference requests to be processed in any AWS US region, such as N. Virginia, from a local AWS US region like Ohio. to 'Aws us' Option B is incorrect because user inputs, service generated prompts, and outputs are explicitly not stored or cached during cross-region inference. Option C is incorrect as cross-region inference is not supported in U.S. SnowGov regions for either inbound or outbound inference requests. Option D is correct because the sources indicate that AI COMPLETE (llama4-maverick) is natively available in AWS US East 1 (N. Virginia) and is supported for cross-region inference within AWS US regions, making it a valid target for the account in US East (Ohio). Option E is incorrect because latency between regions depends on the cloud provider infrastructure and network status, and Snowflake recommends testing specific use cases with cross-region inference enabled.
質問 # 116
A financial analyst wants to build a generative AI application in Snowflake that can answer complex queries by integrating financial reports (unstructured data in stages) and transaction records (structured data in tables). They decide to use Snowflake Cortex Agents. Which of the following statements accurately describe the capabilities and operational aspects of Cortex Agents in this scenario?
(Select all that apply)
- A. Cortex Agents are designed to orchestrate tasks by planning steps, utilising tools like Cortex Analyst for structured data and Cortex Search for unstructured data, and generating comprehensive responses.
- B. To provide the Agent with custom logic for specific data transformations not covered by standard tools, stored procedures or user-defined functions (UDFs) can be implemented as custom tools.
- C. For monitoring agent interactions and performance on the client application, the TruLens Python packages (

- D. When a user asks an ambiguous question, Cortex Agents utilise an 'Explore options' component to consider different permutations and disambiguate the query for improved accuracy.
- E. The primary compute cost for Cortex Agents is based on the number of tokens processed during the planning and reflection phases, with an additional per- message charge for each tool invocation.
正解:A、B、C、D
解説:
Option A is correct. Cortex Agents orchestrate across both structured and unstructured data sources, planning tasks, using tools (including Cortex Analyst and Cortex Search), and generating responses. Option B is correct. Stored procedures and user-defined functions (UDFs) can be used to implement custom tools for Cortex Agents. Option C is correct. The 'Explore options' component of Cortex Agents considers different permutations to disambiguate ambiguous questions, which is part of their orchestration capabilities to improve accuracy. Option D is incorrect. While Cortex Agents utilise LLMs and other Cortex features that incur token or message-based costs, the sources do not explicitly state that the *agent itself* has a primary compute cost based on 'planning and reflection phases' with an 'additional per-message charge for each tool invocation'. The cost of underlying services like Cortex Analyst is '67 Credits per 1,000 messages' and LLM calls via COMPLETE incur token costs, but this option inaccurately describes the agent's direct cost model. Option E is correct. TruLens Python packages (
) are used for monitoring Agent interaction on the client application.
質問 # 117
......
私はあなたがGES-C01試験に合格したいことを知っています。 私たちのGES-C01学習教材は、多くの人が試験に合格するのを助け、あなたを助けようと思います。私たちのGES-C01学習教材の99%の合格率は高いです。また、あなたの自分の努力が必要です。 そして、私たちのGES-C01試験問題を利用すれば、あなたは絶対試験に合格できます。
GES-C01参考書勉強: https://www.certshiken.com/GES-C01-shiken.html
GES-C01 Exam Torrentは、認定を取得するための最良の学習ツールです、Snowflake GES-C01認定資格試験問題集 同時に、3つのバージョンを組み合わせると、最高の学習結果が得られます、毎年のGES-C01試験問題は、テストの目的に基づいてまとめられています、そして、Snowflakeはお客様にディスカウントコードを提供でき、GES-C01復習教材をより安く購入できます、Snowflake GES-C01 「SnowPro® Specialty: Gen AI Certification Exam」はSnowflake資格認定の重要な試験集です、Snowflake GES-C01認定資格試験問題集 電子製品の購入速度を心配する必要はありません、Snowflake GES-C01認定資格試験問題集 IT領域で仕事しているあなたは、きっとIT認定試験を通して自分の能力を証明したいでしょう。
麻衣子も欲情に、熱く、激しくいやらしく、棒状の粘土を左手に、夫々の願いを込めてギュッと握る、GES-C01 Exam Torrentは、認定を取得するための最良の学習ツールです、同時に、3つのバージョンを組み合わせると、最高の学習結果が得られます。
GES-C01認定資格試験問題集 & 資格試験のリーダー & Snowflake SnowPro® Specialty: Gen AI Certification Exam
毎年のGES-C01試験問題は、テストの目的に基づいてまとめられています、そして、Snowflakeはお客様にディスカウントコードを提供でき、GES-C01復習教材をより安く購入できます、Snowflake GES-C01 「SnowPro® Specialty: Gen AI Certification Exam」はSnowflake資格認定の重要な試験集です。
- 高品質GES-C01|有効的なGES-C01認定資格試験問題集試験|試験の準備方法SnowPro® Specialty: Gen AI Certification Exam参考書勉強 🕛 【 GES-C01 】を無料でダウンロード⮆ www.shikenpass.com ⮄ウェブサイトを入力するだけGES-C01最新な問題集
- 試験の準備方法-最新のGES-C01認定資格試験問題集試験-有難いGES-C01参考書勉強 〰 { www.goshiken.com }で使える無料オンライン版▛ GES-C01 ▟ の試験問題GES-C01受験内容
- GES-C01受験対策解説集 🌆 GES-C01復習内容 🧈 GES-C01認定資格試験問題集 🧍 最新☀ GES-C01 ️☀️問題集ファイルは☀ www.passtest.jp ️☀️にて検索GES-C01認定資格試験問題集
- 有効的なGES-C01認定資格試験問題集 - 合格スムーズGES-C01参考書勉強 | 素晴らしいGES-C01キャリアパス 🛫 検索するだけで▶ www.goshiken.com ◀から➡ GES-C01 ️⬅️を無料でダウンロードGES-C01受験対策解説集
- GES-C01赤本合格率 🌴 GES-C01合格率書籍 💲 GES-C01テスト資料 🦸 [ www.goshiken.com ]を入力して➥ GES-C01 🡄を検索し、無料でダウンロードしてくださいGES-C01日本語関連対策
- GES-C01合格内容 📎 GES-C01赤本合格率 😞 GES-C01学習資料 📿 《 www.goshiken.com 》は、“ GES-C01 ”を無料でダウンロードするのに最適なサイトですGES-C01認定資格試験問題集
- GES-C01テスト資料 🚘 GES-C01模擬問題 🟧 GES-C01日本語関連対策 🕧 ▶ www.xhs1991.com ◀に移動し、⏩ GES-C01 ⏪を検索して無料でダウンロードしてくださいGES-C01合格率書籍
- 唯一無二なGES-C01認定資格試験問題集 - 資格試験におけるリーダーオファー - 正確的なGES-C01参考書勉強 🚏 ➥ www.goshiken.com 🡄を開いて➡ GES-C01 ️⬅️を検索し、試験資料を無料でダウンロードしてくださいGES-C01日本語関連対策
- GES-C01 有効練習問題集、GES-C01学習準備資料、SnowPro® Specialty: Gen AI Certification Exam 試験練習pdf ⛅ ▛ www.it-passports.com ▟で使える無料オンライン版▶ GES-C01 ◀ の試験問題GES-C01学習資料
- GES-C01日本語関連対策 🐽 GES-C01受験対策解説集 🥉 GES-C01受験内容 ✊ サイト⮆ www.goshiken.com ⮄で⏩ GES-C01 ⏪問題集をダウンロードGES-C01模擬試験問題集
- 高品質GES-C01|有効的なGES-C01認定資格試験問題集試験|試験の準備方法SnowPro® Specialty: Gen AI Certification Exam参考書勉強 🚍 ➽ www.passtest.jp 🢪で使える無料オンライン版( GES-C01 ) の試験問題GES-C01模擬問題
- vietnamfranchise.vn, www.stes.tyc.edu.tw, k12.instructure.com, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, lokeshyogi.com, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, Disposable vapes
無料でクラウドストレージから最新のCertShiken GES-C01 PDFダンプをダウンロードする:https://drive.google.com/open?id=1sp3YikV1wFEtN5ZcsPXp1c_jK1kNyhh7